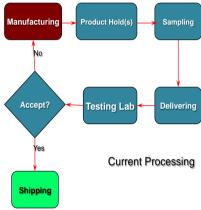




# Connecting Scientific research with Business ideas

#### PROJECT TITLE

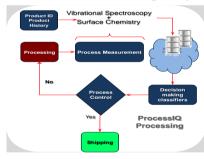
Process Analytical Technology for 'near real time' Holistic process control in Food products, using advance data management and information technology tools (FoodPATH)


**CLIENT** 

**OUR TEAM** 

## **Food Industries**

Prof. George- John NYCHAS Prof Efstathios PANAGOU.


### THE PROBLEM & THE NEED



**Figure 1Current Process** 

The current practice (Fig.1) to meet the demands of EU legislation 2073/2005, address these issues and to assure the safety of food *still relies heavily on regulatory inspection and sampling regimes*. This approach, however, seems inadequate because it cannot sufficiently guarantee consumer protection since 100% inspection and sampling is *technically, financially and logistically impossible*. On the other hand, the food needs rapid, non-invasive and, if possible, hand-held analytical instruments/methods that can be used *on-line*, *in-line* or *at-line* and can ensure that raw and in process materials are both of good quality and safety while food losses are minimized.

## **SOLUTION:** Addressing the problem and the need



**Figure 2 Proposed Process** 

Given the above, it is an industrial requirement to coordinate and reinforce European research to develop and implement "a generalized system/strategy" that will be designed to "analyse and control manufacturing through timely measurements, i.e., during processing those critical quality and performance attributes of raw and in-process materials and processes with the optimum goal of ensuring final product quality and safety (Fig.2) ", while understanding and controlling the food processes should also be feasible.

#### **RESULTS**

Data collected from either vibrational spectroscopy (e.g. FTIR, RAMAN), as well as surface chemistry (hyperspectral / multispectral imaging) instruments combined with appropriate machine learning strategies (for example partial least squares regression, artificial neural networks) could become an interesting tool to

- (i) monitor food spoilage/freshness through the measurement of biochemical changes occurring in food substrate, without the history of sample to be known (e.g. temperature of storage, the initial contamination, pH)
- (ii) quantify certain compounds e.g. fat, proteins that are of great importance for the food industry from the quality as well as from nutritional point of view.









